lunes, 28 de octubre de 2013

Functional brain imaging of peripheral and central vestibular disorders

Authors: 
Marianne Dieterich 1 and Thomas Brandt 2
1 Department of Neurology, Johannes Gutenberg-University of Mainz, Mainz and
2 Department of Neurology, Ludwig-Maximilians University of Munich, Munich,Germany

Correspondence to: Prof. Marianne Dieterich, MD, Department of Neurology, Johannes Gutenberg-University of Mainz, Langenbeckstrasse1, 55131Mainz,Germany
E-mail: dieterich@neurologie.klinik.uni-mainz.de

This review summarizes our current knowledge of multisensory vestibular structures and their functions in
humans. 

Most of it derives from brain activation studies with PET and fMRI conducted over the last decade.

The patterns of activations and deactivations during caloric and galvanic vestibular stimulations in healthy
subjects have been compared with those in patients with acute and chronic peripheral and central vestibular
disorders. 

Major findings are the following: 

(1) In patients with vestibular neuritis the central vestibular system exhibits a spontaneous visual-vestibular activation^deactivation pattern similar to that described in healthy volunteers during unilateral vestibular stimulation

In the acute stage of the disease regional cerebral glucose metabolism (rCGM) increases in the multisensory vestibular cortical and subcortical areas, but simultaneously it significantly decreases in the visual and somatosensory cortex areas

(2) In patients with bilateral vestibular failure the activation^deactivation pattern during vestibular caloric stimulation shows a decrease of activations and deactivations. 

(3) Patients with lesions of the vestibular nuclei due to Wallenberg’s syndrome show no activation or significantly reduced activation in the contralateral hemisphere during caloric irrigation of the ear ipsilateral to the lesioned side, but the activation pattern in the ipsilateral hemisphere appears ‘normal’.

These findings indicate that there are bilateral ascending vestibular pathways from the vestibular nuclei to the
vestibular cortex areas, and the contralateral tract crossing them is predominantly affected. 

(4) Patients with posterolateral thalamic infarctions exhibit significantly reduced activation of the multisensory vestibular cortex in the ipsilateral hemisphere, if the ear ipsilateral to the thalamic lesion is stimulated. 

Activation of similar areas in the contralateral hemisphere is also diminished but to a lesser extent.

These data demonstrate the functional importance of the posterolateral thalamus as a vestibular gatekeeper. 

(5) In patients with vestibulocerebellar lesions due to a bilateral floccular deficiency, which causes downbeat nystagmus (DBN), PET scans reveal that rCGM is reduced in the region of the cerebellar tonsil and flocculus/paraflocculus bilaterally. 

Treatment with 4-aminopyridine lessens this hypometabolism and significantly improves DBN. 

These findings support the hypothesis that the (para-) flocculus and tonsil play a crucial role in DBN. 

Although we can now for the first time attribute particular activations and deactivations to functional deficits in distinct vestibular disorders, the complex puzzle of the various multisensory and sensorimotor functions of the phylogenetically ancient vestibular system is only slowly being unraveled.

 Keywords: vestibular system; vestibular disorder; functional imaging; fMRI; PET
Abbreviations: fMRI=functional magnetic resonance imaging; PET=positron emission tomography; BC=brachium
conjunctivum; PIVC=parieto-insular vestibular cortex; VOR=vestibulo-ocular reflex; CVTT=central ventral tegmental tract; INC = interstitial nucleus of Cajal; MLF; medial longitudinal fasciculus; NPH = nucleus prepositus hypoglossi; PPRF = paramedian pontine reticular formation; Vce = nucleus ventrocaudalis externus; Vim = nucleus ventro-oralis intermedius; Dc=nucleus dorsocaudalis; Vci=nucleus ventrocaudalis internus; VPLo=nucleus ventroposterior lateralis oralis; PMT = nucleus of the paramedian tract; DBN = downbeat nystagmus; rCGM = regional cerebral glucose metabolism.

doi:10.1093/brain/awn042
Fuente :Brain (2008),131 ,2538^2552
http://brain.oxfordjournals.org/

66º Congreso Aniversario de la F.A.S.O.

faso

El Comité Ejecutivo de la Federación Argentina de Sociedades de Otorrinolaringología (F.A.S.O.) organiza el 66º Congreso Aniversario de la FASO.

Auspiciado por las Sociedades Federadas, Filiales y Adherentes que conforman la Federación.
Fecha: Se llevará a cabo los días 27, 28 y 29 de Noviembre de 2013-
Sede: Tanto las sesiones científicas como la exposición comercial se desarrollarán en los salones del
Hotel Costa Galana
Bvd. Patricio Peralta Ramos 5725 Boulevard Marítimo Patricio Peralta Ramos 5725, Mar del Plata, Buenos Aires 0223 410-5000


El jueves 28-11-2013, a las 18.10 horas la Dra. Claudia Barros Cohelo (de la Universidad de Sao Paulo, Brasil y de la Universidad de Iowa, USA) y el Dr. Dario Roitman (UBA), brindaran una conferencia relacionada con la tematica de los acúfenos

Primer implante desarrollado para tratar trastornos del equilibrio "First Implanted Device to Treat Balance Disorder Developed"


Oct. 23, 2010 — A University of Washington Medical Center patient on Thursday, Oct. 21, became the world's first recipient of a device that aims to quell the disabling vertigo associated with Meniere's disease.


The UW Medicine clinicians who developed the implantable device hope that success in a 10-person surgical trial of Meniere's patients will lead to exploration of its usefulness against other common balance disorders that torment millions of people worldwide.



 This is a side view of the implantable device created by University of Washington researchers. The device will be implanted surgically in the first patient in the world on Thursday, Oct. 21, in Seattle, Wash. at UW Medical Center. (Credit: Cochlear Ltd.)



The device being tested -- a cochlear implant and processor with re-engineered software and electrode arrays -- represents four-plus years of work by Drs. Jay Rubinstein and James Phillips of UW's Department of Otolaryngology-Head and Neck Surgery.

 They worked with Drs. Steven Bierer, Albert Fuchs, Chris Kaneko, Leo Ling and Kaibao Nie, UW specialists in signal processing, brainstem physiology and vestibular neural coding.

"What we're proposing here is a potentially safer and more effective therapy than exists now," said Rubinstein, an ear surgeon and auditory scientist who has earned a doctoral degree in bioengineering and who holds multiple U.S. patents.

In the United States, Meniere's affects less than one percent of the population. The disease occurs mostly in people between ages 30 and 50, but can strike anyone. Patients more often experience the condition in one ear; about 30 percent of cases are bilateral.

The disease affects hearing and balance with varying intensity and frequency but can be extremely debilitating.

 Its episodic attacks are thought to stem from the rupture of an inner-ear membrane.

Endolymphatic fluid leaks out of the vestibular system, causing havoc to the brain's perception of balance.

To stave off nausea, afflicted people must lie still, typically for several hours and sometimes up to half a day while the membrane self-repairs and equilibrium is restored, said Phillips, a UW research associate professor and director of the UW Dizziness and Balance Center. Because the attacks come with scant warning, a Meniere's diagnosis can cause people to change careers and curb their lifestyles.

Many patients respond to first-line treatments of medication and changes to diet and activity.

When those therapies fail to reduce the rate of attacks, surgery is often an effective option but it typically is ablative (destructive) in nature.

In essence, the patient sacrifices function in the affected ear to halt the vertigo -- akin to a pilot who shuts down an erratic engine during flight.

Forever after, the person's balance and, often, hearing are based on one ear's function.

With their device, Phillips and Rubinstein aim to restore the patient's balance during attacks while leaving natural hearing and residual balance function intact.

A patient wears a processor behind the affected ear and activates it as an attack starts. The processor wirelessly signals the device, which is implanted almost directly underneath in a small well created in the temporal bone.

The device in turn transmits electrical impulses through three electrodes inserted into the canals of the inner ear's bony labyrinth.

"It's an override," Phillips said. "It doesn't change what's happening in the ear, but it eliminates the symptoms while replacing the function of that ear until it recovers."

The specific placement of the electrodes in the bony labyrinth is determined by neuronal signal testing at the time of implant.
 The superior semicircular canal, lateral semicircular canal and posterior semicircular canal each receive one electrode array.

A National Institutes of Health grant funded the development of the device and its initial testing at the Washington National Primate Research Center.

The promising results from those tests led the U.S. Food and Drug Administration, in June, to approve the device and the proposed surgical implantation procedure.

Shortly thereafter, the limited surgical trial in humans won approval from the Western Institutional Review Board, an independent body charged with protecting the safety of research subjects.

By basing their invention on cochlear implants whose design and surgical implantation were already FDA-approved, Phillips and Rubinstein leapfrogged scientists at other institutions who had begun years earlier but chosen to develop novel prototypes.

"If you started from scratch, in a circumstance like this where no one has ever treated a vestibular disorder with a device, it probably would take 10 years to develop such a device," Rubinstein said.

The device epitomizes the translational advancements pursued at UW's academic medical centers, he said. He credited the team's skills and its access to the primate center, whose labs facilitated the quick turnaround of results that helped win the FDA's support.

A successful human trial could lead the implant to become the first-choice surgical intervention for Meniere's patients, Phillips said, and spark collaboration with other researchers who are studying more widespread balance disorders.

The first patient will be a 56-year-old man from Yakima, Wash. He has unilateral Meniere's disease and has been a patient of Rubinstein's for about two years.

See a related video at UW Medicine's YouTube site. Drs. Rubinstein and Phillips discuss the device: http://www.youtube.com/watch?v=iu047vTckvA

Cochlear Ltd. of Lane Cove, Australia, will manufacture the device. Cochlear is a medical equipment company and longtime maker of devices for hearing-impaired people.

Fuente:  http://www.sciencedaily.com/releases/2010/10/101021090028.htm

Protesis para restaurar el equilibrio en el Sindrome de Meniere: "Helping to Restore Balance After Inner Ear Disorder"

June 13, 2013 — Many disorders of the inner hear which affect both hearing and balance can be hugely debilitating and are currently largely incurable. 

Cochlear implants have been used for many years to replace lost hearing resulting from inner ear damage. 

However, to date, there has not been an analogous treatment for balance disorders resulting from inner ear disease. 

One potential new treatment is an implantable vestibular prosthesis which would directly activate the vestibular nerve by electrical stimulation.




This prosthetic treatment is tested in a new study by Christopher Phillips and his colleagues from the University of Washington in Seattle, USA. 

Their findings are published in the Springer journal Experimental Brain Research.

Meniere's disease is a disorder of the inner ear that can affect hearing and balance to varying degrees. 

The characteristic symptoms are episodes of vertigo, tinnitus, a feeling of pressure in the ears and hearing loss which tends to worsen as time goes on. 

Although there is medication which can help once an attack is underway, there is currently no long-term therapy which can resolve the disease completely.

Phillips and his colleagues have developed a vestibular prosthesis which delivers electrical stimulation to the fluid inside the semi-circular canals of the ear. 

In effect, the stimulation of the fluid makes the brain believe that the body is moving or swaying in a certain direction. 

This then causes a compensatory postural reflex to stabilize the posture thereby helping to restore balance.

For their study, this prosthesis was inserted into the ears of four subjects all suffering from long-term Meniere's disease and differing degrees of hearing loss which was resistant to other management strategies.

After a full evaluation of each participant's vestibular function, their eye function was measured in response to electrical stimulation along with their postural response both with their eyes open and closed.

The researchers found that electrical stimulation of the fluid in the semicircular canals of the affected ear did result in a change in posture, the direction of which was dependent on which ear was stimulated. 

However, each subject had different sway responses to the stimulation given. 

The authors believe this could be caused by small differences in the location of the electrode between subjects. 

Thus fine tuning and individual calibration for each electrode implant would be required for it to be effective.

Overall the results illustrate that this type of prosthesis may eventually be a possible treatment for balance issues caused by Meniere's disease. 

However, there are a large number of matters which would need resolving before it is ready for use. 

The lack of consistency in direction and magnitude of sway response would require further study to ensure that any prosthesis developed could give reliable results for different individuals.

The authors conclude: "Taken together, our findings support the feasibility of a vestibular prosthesis for the control of balance and illustrate new challenges for the development of this technology.

 This study is a first step in that direction."


Story Source:

The above story is based on materials provided by Springer Science+Business Media.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. Phillips, C. et al. Postural responses to electrical stimulation of the vestibular end organs in human subjects. Experimental Brain Research, 2013 DOI: 10.1007/s00221-013-3604-3

Springer Science+Business Media (2013, June 13). Helping to restore balance after inner ear disorder. ScienceDaily. Retrieved October 28, 2013, from http://www.sciencedaily.com­ /releases/2013/06/130613104137.htm


domingo, 27 de octubre de 2013

Vértico cervical "CERVICAL VERTIGO -- Denying that it exists is not defensible."

Timothy C. Hain. MD.

OVERVIEW

Cervical vertigo is a vertigo or dizziness that is provoked by a particular neck posture no matter what the orientation of the head is to gravity. 
For example, dizziness provoked by turning the head about the vertical axis, while sitting upright.
Cervical vertigo is matter of considerable concern because of the high litigation related costs of whiplash injuries.

We often encounter physicians, generally orthopedic surgeons or neurosurgeons, who say that dizziness does not "come from the neck". 
Or in other words, these physicians state that cervical dizziness does not exist. 
  
The purpose of this page is to gently remind these physicians and otherwise interested persons of the substantial data that proves that dizziness can come from the neck.

1- Cervical vertigo can be due to neck artery compression.
  • The vertebral arteries supply blood to the back of the brain, and traverse the cervical spine.
  • The vertebral arteries can be pinched off in the neck when it turns.
  • When the injury is severe, the artery may tear and "dissect".
  •       When the pinching off or blockage happens, dizziness, or worse (a stroke can result). (Cassidy et al, 2008; Kamouchi et al. 2003; Mann et al, 2001; Sakaguchi et al 2003, Smith et al, 2003; Vibert et al, 1993)

2. Neck afferent ataxia.

Experimentally dizziness can be produced by injections of local anesthetics into the neck.

The key reference to read regarding neck afferent ataxia is DeJong and Dejong (1997).

They injected local anesthetics into two human volunteers. Such injections caused unsteadiness and minor amounts of dizziness.
DeJong and Dejong also injected the necks of several species of animals.
  • In cats, a staggering ataxia was produced in about 80%.
  • In monkeys, ataxia was severe.
  • In rabbits, unilateral neck injection was followed by falling and rolling to the side of the injection, then by lateropulsion, and finally by hypotonia on the injected side. After bilateral neck injections, rabbits were unwilling to move and had horizontal oscillating head movements.
Disturbances of gait occur in animals in whom the upper cervical sensory supply was disturbed (Longet, 1845), in whom the neck muscles were anesthetized (Abrahams and Falchetto, 1969), and by cutting the upper cervical dorsal roots (Cohen 1961, Richmond, 1976).

3- Neck afferent nystagmus

Dejong and Dejong also observed nystagmus after injection of cats, lasting from 4 minutes to an hour.

In monkeys, nystagmus was seen when lidocaine was injected very high up, against the later side of the occipital condyle.

It was not produced by injection at lower levels.

Nystagmus was not observed after injection in the two human subjects.

4- Nystagmus, a physical manifestation of vertigo, can be produced by stimulating the neck.

Vibration of the neck is a well established source of nystagmus, in persons with vestibular damage.

CASE EXAMPLES:

1-Vascular.
Case 1. An otherwise healthy woman complained of positional vertigo elicited by turning the head to the left. 
On positional testing, after roughly a 20 second latency, she developed an extremely powerful right-beating nystagmus, which persisted as long as the head was turned to the left, and was accompanied by additional symptoms such as ear fullness, and at one point, a spot in the vision. 

She did not get nauseated. When she was tested upright with the head turned to the left side, after 20 seconds she developed a powerful right-beating nystagmus . 

CT-angiography only revealed an aberrant right subclavian. Nevertheless, we attribute her symptoms to vascular compression in as much as no other mechanism would be likely to cause a 20 second delayed nystagmus.

Case 2. Vascular (vertebro-basilar insufficiency)

An 88-year-old white male with diabetes complained of dizziness and imbalance for the last six months. 

In particular, he complains of spinning, lightheadedness, trouble with his hearing, and attacks once or twice per day.  

Standing up, rapid head movements, walking in a dark room, not eating, exercise, and coughing or sneezing can trigger symptoms.  

A brain MRI scan, showed tiny chronic infarctions involving the right side of the thalamus and the left cerebellar hemisphere.   Hemoglobin A1c was 8.6. 
Under video Frenzel's goggles, there is no spontaneous nystagmus but with the vertebral artery test, when his head is turned to the right and left there for about 10-15 seconds, he reproducibly develops a weak down-beating nystagmus. 

Case 3. Herniated disk. Another otherwise healthy man was involved in an auto accident. 

He was wearing a seat belt, and while his head rotated forward and backward, there was no substantial trauma to the head. 

A disabling vertigo ensued, characterized by nausea and motion intolerance. 

Physical examination revealed a weak horizontal nystagmus that could be elicited by turning the head to one side (positive "vertebral artery test"). 

MRI of the neck revealed a C5-C6 disk herniation, abutting the thecal sac. 

Comment: Nystagmus in this case does not begin immediately but starts after about 10 seconds of head turning. This is the most common association between neck injury and dizziness.

Case 4. Cervical afferents. An otherwise healthy 32 year old woman developed neck pain, dizziness, and inability to drive due to visual sensitivity. 

Audiometry was normal. An MRI/A showed a small vertebral on the left but a CT-angiogram was completely normal. 

MRI of the neck showed some mild disk disease. On examination there was significant tenderness to the posterior neck muscles. Positional testing revealed a weak direction changing positional nystagmus, which did not reverse with head prone. 

Comment: the nystagmus in this case as well as other similar ones was weak and came on immediately with positioning.

REFERENCES:

  • Abrahams VC, Falchetto S. 1969 Hind leg ataxia of cervical origin and cervico-lumbar interactions with a supatentorial pathway. J. Physiol 203:435-447
  • Benito-Leon, J., J. Diaz-Guzman, S. Madero, et al. (1996). "[Vertigo as an atypical symptom of intraspinal cord tumor]." Rev Neurol24(129): 564-6.
  • Borg-Stein J, Rauch SD, Krabak B. Evaluation and management of cervicogenic dizziness. Critical Reviews in Physical and Rehabilitation Medicine 13(4) 255-264, 2001
  • Bogduk N. Cervical causes of headache and dizziness. In: grieve G (beds) Modern Manual therapy of the vertebral column. Churchill Livingstone, Edinburgh, 289-302
  • Brandt, T. (1996). "Cervical vertigo--reality or fiction?" Audiol Neurootol, 1(4): 187-96.
  • de Jong P, de Jong M, Cohen B, Jongkees L. Ataxia and nystagmus induced by injection of local anesthetics in the neck. Ann Neurol, 1, 240-246, 1977
  • Brandt, T. and A. M. Bronstein (2001). "Cervical vertigo." J Neurol Neurosurg Psychiatry71(1): 8-12.
  • Cassidy JD, Boyle E, Cote P, He Y, Hogg-Johnson S, Silver F, Bondy S. Risks of vertebrobasilar stroke and chiropractic care. Spine 2008:33:S186-S193
  • Heikkila H. Cervical Vertigo. Chapter 17 in Grieve's modern manual therapy. The vertebral column. Third edn. Ed Boyling JD, Jull GA, Twomey PLT). Churchill Livngstone,Edinburgh, 2004.
  • Kamouchi, M., K. Kishikawa, R. Matsuo, et al. (2003). "Ultrasonographic detection of extracranial vertebral artery compression in bow hunter's brain ischemia caused by neck rotation." Cerebrovasc Dis16(3): 303-5.
  • Mann T, Refshauge KM. Causes of complications from cervical spine manipulation. Australian J Physiotherapy 47:255-266, 2001. [Comment: This is an outstanding review !]
  • Rothwell, D. M., S. J. Bondy and J. I. Williams (2001). "Chiropractic manipulation and stroke: a population-based case-control study." Stroke32(5): 1054-60.
  • Ryan GMS, Cope S. Cervical Vertigo. Lancet 31, 1355-1358
  • Smith, W. S., S. C. Johnston, E. J. Skalabrin, et al. (2003). "Spinal manipulative therapy is an independent risk factor for vertebral artery dissection." Neurology60(9): 1424-8.
  • Sakaguchi M et al (2003). "Mechanical compression of the extracranial vertebral artery during neck rotation." Neurology 61(6): 845-847.
  • Strupp et al. Rotational vertebral artery occlusion syndrome with vertigo due to labyrinthine excitation. Neurology 54, 6, 2000
  • Vibert D, Rochr-le J, Gauthier G. Vertigo as manifestation of vertebral artery dissection after chiropractic neck manipulations. ORL 1993:55:140-142
Fuente:  http://www.dizziness-and-balance.com/disorders/central/cervical.html

sábado, 26 de octubre de 2013

Acúfenos Objetivos: Mioclonias palatinas "Objective tinnitus from palatal myoclonus. Use of botulinum toxin: a case report"


Objective tinnitus from palatal myoclonus. Use of botulinum toxin: a case report

Objective tinnitus from palatal myoclonus. Use of botulinum toxin: a case report

Noemi Conill Tobías a, , Carlos de Paula Vernetta b, Francisco Javier García Callejo a, Jaime Marco Algarra a,

a Servicio Otorrinolaringología, Hospital Clínico Universitario, Valencia, España
b Servicio Otorrinolaringología, Hospital Universitario La Fe, Valencia, España

Palabras Clave

Acúfeno objetivo. Mioclonía palatal. Toxina botulínica.

Keywords

Objective tinnitus. Palatal myoclonus. Botulinum toxin.

Abstract

El acúfeno objetivo o somatoacúfeno puede presentar múltiples etiologías, siendo una de las más infrecuentes la mioclonía palatal generada por la contracción rítmica e involuntaria del paladar blando que genera un click audible por el enfermo y el explorador.
La toxina botulínica genera una parálisis temporal a nivel muscular mediante la inhibición presináptica de la acetilcolina a nivel de la unión neuromuscular.
Presentamos el caso de una paciente con un acúfeno objetivo de larga evolución y su respuesta a la inyección con toxina botulínica.

Article

Caso clínico Paciente mujer de 78 años de edad con antecedentes de hipertensión arterial y cuadro depresivo en el contexto de un acúfeno objetivo crónico.
Se realiza inspección orofaríngea, otoscopia, nasofibroscopia, audiometría tonal liminal, acufenometría, impedanciometría y productos de distorsión (DPOAE) llegándose al diagnóstico de mioclonía palatal.

Previamente había sido valorada en el servicio de Neurología, con pruebas de imagen (TC y RMN) y exploración dentro de la normalidad.

La paciente es intervenida bajo anestesia local y visión directa con endoscopio rígido (0°) inyectándose 10 unidades (U) de toxina botulínica subtipo A (5U en el tensor del velo del paladar y 5U en el elevador del velo del paladar, de forma bilateral) (Figura 1, Figura 2).

Se realizaron controles semanales durante el primer mes y posteriormente a los tres y 6 meses.

El acúfeno desapareció a los 7 días, objetivando a los 15 días una parálisis de los músculos tensor y elevador del velo del paladar de forma bilateral, apreciándose únicamente una discreta contracción del velo del paladar izquierdo, sin clínica asociada.

Como efecto secundario se observó una rinolalia abierta durante la primera semana de tratamiento, que generó reflujo de líquido nasal en dos ocasiones.

No se evidenció otalgia ni incremento de su hipoacusia (hipoacusia mixta bilateral de grado moderado). Tampoco aparecieron episodios de disfagia ni aspiración.

En el seguimiento, tras la inyección también se observó una correcta funcionalidad laríngea.
Puntos de inyección a nivel del elevador (delante) y tensor (detrás) del velo del paladar. Visión endoscópica fosa nasal derecha.
Figura 1. Puntos de inyección a nivel del elevador (delante) y tensor (detrás) del velo del paladar. Visión endoscópica fosa nasal derecha.


Material para inyección de toxina botulínica.
Figura 2. Material para inyección de toxina botulínica.


A los 5 meses reapareció el acúfeno pero de una intensidad menor al inicial, por lo que decidimos administrar una segunda dosis de toxina botulínica tipo A (30U)1, 2.
 
Discusión
  El acúfeno objetivo puede presentar diversas etiologías siendo una de las más infrecuentes la mioclonía palatal. Se trata de una patología poco frecuente4, generada por una contracción rítmica e involuntaria del paladar blando.

La toxina botulínica subtipo A está indicada en todas aquellas patologías que resultan de la hiperfunción muscular y la disfunción autonómica.

Al inyectarla se liga a las terminaciones nerviosas colinérgicas, produciendo en el músculo una parálisis flácida3. Su efecto máximo se produce a los 7-14 días, restableciéndose en el plazo de 3-6 meses la función muscular.
Su uso repetido no da lugar a atrofia ni a degeneración muscular permanente3.

En nuestro caso la paciente consultó por un acúfeno, objetivo que se había intensificado hasta el punto de repercutir de forma importante en su actividad diaria.

En el diagnóstico destacamos la presencia de forma repetida de una muesca en la curva de la impedanciometría que se correspondía con el acúfeno que se objetivaba en la paciente.

También resultaron congruentes con el diagnóstico la inspección orofaríngea al igual que la nasofibroscopia. Para calcular la dosis se comenzó infiltrando la dosis mínima eficaz publicada en la literatura5, 6, 7, 8, 9, observando mínimos efectos secundarios.

Se decidió aumentar posteriormente la dosis (30 U) sin observar un incremento significativo en la duración del efecto.

En nuestro caso el uso de toxina botulínica en el tratamiento de la mioclonía palatal consiguió unos resultados óptimos con mínimos efectos secundarios, el único inconveniente es el carácter temporal del efecto de la toxina, lo que obliga a reinyecciones repetidas de la misma cada 5-6 meses.

Conflicto de intereses Los autores declaran no tener ningún conflicto de intereses.
Autor para correspondencia. noeconill@hotmail.es

Bibliography

1.Saaed SR, Brokes GB. The use of clostridium botulinum toxin in palatal myoclonus. A preliminary report. A preliminary report. J Laryngol Otol. 1993;107:208-10.
Medline
2.Chien HF, Sanchez TG, Sennes LU, Barbosa ER. Endonasal approach of salpingo pharyngeus muscle for the treatment of ear click related to palatal tremor. Parkinsonism Relat Disord. 2007;13:254-6.
Medline
3.Fernández RA, López Laur JD, Ciccarelli AS, De Jong LIT, Caballero PA, Bianco I. Toxina botulínica para uso terapéutico. Revista Medédica Universitaria. 2006;2:1-7.
4.Krause E, Leunig A, Klopstock T, Gürkov R. Treatment of essential palatal myoclonus in a 10-year-old girl with botulinum neurotoxin. Otol Neurotol. 2006;27:672-5.
Medline
5.Olthoff A, Laskawi R, Kruse E. Successful treatment of autophonia with botulinum toxin: case report. Ann Otol Rhinol Laryngol. 2007;116:594-8.
Medline
6.Stidham KR, Solomon PH, Roberson JB. Evaluation of botulinum toxin A in treatment of tinnitus. Otolaryngol Head and Neck Surg. 2005;132:883-9.
7.Bryce GE, Morrison MD. Botulinum toxin treatment of essential palatal myoclonus tinnitus. J Otolaryngol. 1998;213-6.
8.Srirompotong S, Tiamkao S, Jitpimolmard S. Botulinum toxin inyection for objective tinnitus from palatal myoclonus:a case report. J Med Assoc Thai. 2002;85:392-5.
Medline
9.Dijk JM, Tijssen MA. Management of patients with myoclonus: available therapies and the need for an evidence-based approach. Lancet Neurol. 2010;9:1028-36.
Medline

Fuente: Acta otorrinolaringologica Española ,  Vol. 63. Núm. 05. Septiembre 2012 - Octubre 2012

domingo, 20 de octubre de 2013

Seccion libros "Oxford Textbook of Vertigo and Imbalance"

     Oxford Textbook of Vertigo and Imbalance

  • Oxford Textbook of Vertigo and Imbalance

    Edited by Adolfo Bronstein
    368 pages | numerous illustrations and photographs throughout | 276x219mm
    978-0-19-960899-7 | Hardback | 21 February 2013
    Also available as: Online | eBook
     
  • Practical, easy-to-read text with a clinical focus
  • Published in concurrent print and online versions to enhance the learning experience
  • The online version allows access to the full content of the textbook, contains links from the references to primary research journal articles, allows full text searches, and provides access to figures and tables that can be downloaded to PowerPoint®.
Vertigo, dizziness, and imbalance rank amongst the most common presenting symptoms in neurology, ENT, geriatric medicine, and general practice. These symptoms can originate from many different organs and systems, such as the inner ear, general medical conditions, neurological and psychological disorders. The Oxford Textbook of Vertigo and Imbalance provides an up-to-date summary of the scientific basis, clinical diagnosis, and management of disorders leading to dizziness and poor balance. This textbook is conceptually divided into three sections, detailing the scientific basis, general clinical issues, and specific diseases diagnosed in clinical practice that are responsible for complaints of dizziness and imbalance. Individual chapters address benign paroxysmal positional vertigo, vestibular migraine, vestibular neuritis, stroke, and Ménière's disease. Additional chapters follow a syndrome-based approach and cover multiple conditions, including cerebellar disorders, bilateral vestibular failure and gait, and psychological disorders.

The print edition is complemented by an online version, which allows access to the full content of the textbook, contains links from the references to primary research journal articles, allows full text searches, and provides access to figures and tables that can be downloaded to PowerPoint.

It serves a useful clinical reference for neurologists, otorhinolaryngologists, audio-vestibular physicians, and senior trainees in those specialties.Readership: Neurologists, ENT specialists, audio-vestibular physicians and senior trainees in those medical specialities; other healthcare professionals, in particular audiologists and vestibular scientists.

Table of contents:
 
1 Biophysics of the Vestibular System. Herman Kingma and Maurice Janssen
2 Vestibular Physiology: How to be a Clinician and Yet Think Physiologically. Dominik Straumann
3 Eye Movements, Vision, and the Vestibulo-Ocular Reflexes Alessandro Serra, Karim Salame, Ke Liao, and R. John Leigh
4 Postural Control and the Vestibulospinal System John H. J. Allum and Mark G. Carpenter
5 The Vestibulo-Autonomic System Bill J. Yates, Ilan A. Kerman, Brian Jian, and Timothy D. Wilson
6 Multisensory Interaction and Vestibular Compensation Ian S. Curthoys and G. Michael Halmagyi
7 Functional Imaging of the Vestibular System Marianne Dieterich
8 Clinical Anatomy and Physiology of the Vestibular System G. Michael Halmagyi and Ian S. Curthoys
9 I am an Otologist, What Neurology do I Need to Know? Thomas Lempert
10 I am a Neurologist, What Ototogy do I Need to Know? Rosalyn A. Davies and Louisa J. Murdin
11 Symptoms and Syndromes in the Patient with Dizziness or Unsteadiness Adolfo M. Bronstein and Thomas Lempert
12 Clinical Bedside Examination Amir Kheradmand, Adolfo M. Bronstein, and David S. Zee
13 Oscillopsia and Visuo-Vestibular symptoms Adolfo M. Bronstein
14 The Role of Vestibular Laboratory Testing Neil Shepard, Kristen Janky, and Scott Eggers
15 Imaging of Vertigo and Labyrinthine Disorders M. Radon, Tarek A. Yousry
16 Vestibular Symptoms, Balance and Their Disorders: How Will we Classify Them? Alexandre R. Bisdorff, Jeffrey P. Staab, and David E. Newman-Toker
17 The Principles of Balance Treatment and Rehabilitation Marousa Pavlou and Di Newham
18 The Epidemiology of Vertigo and Imbalance Hannelore K. Neuhauser
19 Vestibular Neuritis Michael Strupp and Thomas Brandt
20 Positional Vertigo and Benign Paroxysmal Positional Vertigo Daniele Nuti and David S. Zee
21 Migraine and Other Episodic Vestibular Disorders Michael von Brevern
22 Ménière's Disease Yuri Agrawal and Lloyd B. Minor
23 Posterior Circulation Stroke and Vestibular Syndromes Ji Soo Kim and Hyung Lee
24 Gait and Dysequilibrium P. D. Thompson and T. E. Kimber
25 Progressive Vestibulocerebellar Syndromes Tracey D. Graves and Joanna C. Jen
26 Bilateral Vestibular Failure: Causes and Courses Thomas Brandt, Marianne Dieterich, and Michael Strupp
27 Vertigo and Dizziness in General Medicine Kevin Barraclough and Barry Seemungal
28 Motion Sickness and Disorientation in Vehicles John F. Golding and Michael A. Gresty
29 Fits, Faints, Funny Turns, and Falls in the Differential Diagnosis of the Dizzy Patient Alexander A. Tarnutzer and David E. Newman-Toker
30 Behavioral Neuro-otology Jeffrey P. Staab



Edited by Adolfo Bronstein, Professor of Clinical Neuro-otology and Head of the Neuro-otology Unit, Imperial College London, and Consultant Neurologist at Charing Cross Hospital (Imperial College NHS Trust) and at the National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
Contributors:
Yuri Agrawal, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
John H. J. Allum, Department of ORL, University Hospital, Basel, Switzerland
Kevin Barraclough, General Practitioner, Painswick, UK
Alexandre R. Bisdorff, Department of Neurology, Centre Hospitalier Emile Mayrisch, Luxembourg
Thomas Brandt, Institute for Clinical Neurosciences, Ludwig-Maximilians-University; and Integrated Center for Research and Treatment of Vertigo, Balance and Ocular Motor Disorders (IFB LMU ), Ludwig-Maximilians-University, Munich, Germany
Adolfo M. Bronstein, Neuro-otology Unit (Centre for Neuroscience), Imperial College London; and Charing Cross Hospital, London, UK
Mark G. Carpenter, School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
Ian S. Curthoys, Neurology Department, Royal Prince Alfred Hospital, Sydney; and Vestibular Research Laboratory, School of Psychology, University of Sydney, Australia
Rosalyn A. Davies, Consultant in Audio-vestibular Medicine, Basil Samuel Outpatients, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
Marianne Dieterich, Department of Neurology, Ludwig-Maximilians University of Munich; and Integrated Center for Research and Treatment of Vertigo, Balance and Ocular Motor Disorders (IFB LMU ), Ludwig-Maximilians University of Munich, Germany
Scott Eggers, Assistant Professor of Neurology, Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
John F. Golding, Department of Psychology, University of Westminster, London, UK
Tracey D. Graves, Department of Clinical Neurosciences, Oxford University Hospitals, John Radcliffe Hospital, Oxford, UK
Michael A. Gresty, Academic Department of Neuro-otology, Division of Experimental Medicine, Imperial College London, UK
G. Michael Halmagyi, Neurology Department, Royal Prince Alfred Hospital, Sydney, Australia
Kristen Janky, Coordinator, Vestibular Services, Boys Town National Research Hospital, Omaha, NE, USA
Maurice Janssen, Department of ORL and Head and Neck Surgery, Division of Balance Disorders, Maastricht University Medical Centre, The Netherlands
Joanna C. Jen, Department of Neurology, University of California at Los Angeles School of Medicine, CA, USA
Brian J. Jian, Department of Neurosurgery, University of California at San Francisco, CA, USA
Ilan A. Kerman, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
Amir Kheradmand, Oculomotor Lab, Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
Ji Soo Kim, Department of Neurology, College of Medicine, Seoul National University, Bundang Hospital, Gyeonggi-do, South Korea
T. E. Kimber, Department of Neurology, Royal Adelaide Hospital; and University Department of Medicine, University of Adelaide, Australia
Herman Kingma, Department of ORL and Head and Neck Surgery, Division of Balance Disorders, Maastricht University Medical Centre, The Netherlands
Hyung Lee, Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea
R. John Leigh, Neurology Service, Veterans Affairs Medical Center and Case Medical Center, Cleveland, OH, USA
Thomas Lempert, Department of Neurology, Schlosspark-Klinik, Berlin; and Vestibular Research Group, Charité University Hospital, Berlin, Germany
Ke Liao, Neurology Service, Veterans Affairs Medical Center and Case Medical Center, Cleveland, OH, USA
Lloyd B. Minor, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
Louisa J. Murdin, Department of Neuro-otology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
Hannelore K. Neuhauser, Department of Epidemiology, Robert Koch Institute, Berlin; and Vestibular Research Group, Department of Neurology, Charité, Berlin, Germany
Di Newham, Centre of Human and Aerospace Physiological Sciences, King's College London, UK
David E. Newman-Toker, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Daniele Nutia, Department of Human Pathology and Oncology, Section of Otolaryngology, Siena Medical School, Italy
Marousa Pavlou, Centre of Human and Aerospace Physiological Sciences, King's College London, UK
Mark Radon,
Karim Salame, Neurology Service, Veterans Affairs Medical Center and Case Medical Center, Cleveland, OH, USA
Barry Seemungal, Neuro-Otology Unit, Division of Neuroscience, Charing Cross Hospital, Imperial College, London, UK
Alessandro Serra, Neurology Service, Veterans Affairs Medical Center and Case Medical Center, Cleveland, OH, USA
Neil Shepard, Professor of Audiology and Director of the Dizziness and Balance Disorders Programme, Mayo Clinical College of Medicine, Rochester, MN, USA
Jeffrey P. Staab, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
Dominik Straumann, Department of Neurology, University Hospital Zurich, Switzerland
Michael Strupp, Department of Neurology, Ludwig-Maximilians-University; and Integrated Center for Research and Treatment of Vertigo, Balance and Ocular Motor Disorders (IFB LMU ), Ludwig-Maximilians-University, Munich, Germany
Alexander A. Tarnutzer, Department of Neurology, University Hospital Zurich, Switzerland
P. D. Thompson, Department of Neurology, Royal Adelaide Hospital; and University Department of Medicine, University of Adelaide, Australia
Michael von Brevern, Department of Neurology, Park-Klinik Weissensee, Berlin, Germany
Timothy D. Wilson, Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
Bill J. Yates, Departments of Otolaryngology and Neuroscience, University of Pittsburgh, PA, USA
T. A. Yousry, Professor and Head of the Lysholm Department of Neuroradiology, Institute of Neurology, Queen Square, London, UK
David S. Zee, Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA

Acúfenos: seccion equipamiento. Premios innovar."Tinitoff: Técnica y dispositivo para el tratamiento de acúfenos de Alejandro Uriz"

12.10.2013

Se entregaron los premios INNOVAR 2013

Buenos Aires, Argentina, Con la presencia del ministro de Ciencia, Dr. Lino Barañao, se premiaron a sesenta proyectos innovadores de todo el país.
Ganadores INNOVAR 2013 1
El ministro de Ciencia, Lino Barañao, en la entrega de premios INNOVAR 2013

El Ministerio de Ciencia, Tecnología e Innovación Productiva, a través del Programa Nacional de Popularización de la Ciencia y la Innovación, entregó los premios de la 9° edición del Concurso Nacional de Innovaciones en el microestadio de Tecnópolis.

Presenciaron esta premiación el ministro de Ciencia, D. Lino Barañao; la coordinadora del Programa Nacional de Popularización de la Ciencia y la Innovación, Dra. Vera Brudny; el Ing. Daniel Lupi, miembro del consejo asesor del Instituto Nacional de Tecnología Industrial; y la coordinadora nacional de investigaciones del Instituto Nacional de Tecnología Agropecuaria, Dra. Norma Pensel.

Durante el acto de premiación, el  ministro Lino Barañao dijo respecto a la muestra “es único que exista un país que tenga una muestra que reúna tanta variedad de soluciones en un mismo espacio”, y señaló: “Más allá de la calidad del jurado, sus criterios son subjetivos y temporarios. Lo importante es que sean productos que lleguen al mercado, se comercialicen, así lograríamos una faceta muy importante para la Argentina”.
Luego ratificó la importancia de sostener “el compromiso de seguir trabajando, para que las capacidades creativas se concreten en hechos para mejorar la calidad de vida de las personas”.

Los criterios de selección de los ganadores se basaron en el potencial innovador y el grado de originalidad de las propuestas. En esta edición del concurso se presentaron 1.751 proyectos, de los cuales se seleccionaron sesenta como ganadores.

Las categorías en las que concursaron los proyectos seleccionados son: Producto innovador, que incluye productos y/o procesos destacados por su potencial comercial, por su grado de novedad, por la tecnología empleada, por su diseño industrial o por su diseño gráfico; Investigación aplicada que son productos y/o procesos derivados de una línea de investigación científica; e Innovación en las universidades que abarca proyectos de estudiantes universitarios.

INNOVAR otorgó un total de $985.000 para los diversos productos novedosos. A la categoría Producto innovador se entregaron 5 distinciones, a la subcategoría Grado de novedad de $30.000 cada una, 5 distinciones a la subcategoría Diseño industrial de $20.000 cada una, 4 distinciones a la subcategoría Tecnología desarrollada de $20.000 cada una y 5 distinciones a la subcategoría Diseño gráfico de $15.000 cada una. A la categoría Investigación aplicada se le otorgaron 3 distinciones de $30.000 cada una, 3 distinciones de $20.000 cada una y 3 distinciones de $10.000 cada una.

Y por su parte, a la categoría Innovación en las universidades se le dieron 30 distinciones de $10.000 cada una.

Además, se entregó el premio INNOVAR que consistió en el otorgamiento de dos distinciones de $50.000 a dos proyectos seleccionados por el jurado dentro de los ganadores de todas las categorías anteriores. Asimismo, la Organización Mundial de la Propiedad Intelectual entregó una medalla de oro y certificado a uno de los ganadores del premio INNOVAR por estar patentado o en proceso de patentamiento.

La muestra, que cuenta con más de 400 proyectos, continuará abierta al público hasta mañana a las 20 h.

Ganadores Producto innovador:

Subcategoría Grado de novedad:
  • Heatbox - no más comida fría de Sergio Villarreal.
  • Mortero polímero con arído del reciclado del plástico de Humberto Pérez Gómez.
  • Trimove Integra: movilidad para todos de Juan Artuso.
  • Sistemfix - Sistema de soporte de mesadas de Luis Tosetti.
  • Sembradora neumática de hortalizas de Pablo Dumrauf.
Subcategoría Diseño:
  • Ecógrafo Terason t-3000 de Patricio Boschetti Bonilla.
  • Prótesis de revisión para reemplazo total de rodilla raven de Ezequiel Kobrinsky.
  • Kayak Angler de pesca rotomoldeado de Santiago TelascoGandolfo.
  • Corral para crianza intensiva de terneros de Julián García.
  • Cortadora de césped compacta plegable de Luis Sobrado.
Subcategoría Tecnología desarrollada:
  • Termociclador con gradiente para amplificación de ADN de Carlos Balian.
  • Sistema de utilización de aire caliente como defensa contra helada en los cultivos de Ítalo Ponce.
  • Videolector portátil de Gabriel Maissonave.
  • Máquina cosechadora de algodón automotriz con entrega modular del algodón cosechado de Orlando Pilatti.
Subcategoría Diseño gráfico:
  • Argentipos- Archivo Nacional de Tipografías de Nicolás Pellegrini.
  • Desarrollo de identidad visual para parques provinciales de Karina Odzomek y Daniela Pasquet.
  • Tienda Voko de Andrés Bustamante.
  • Diario Nuestro Sur de Eric Jensen.
  • Qubotic: robótica al cubo de Estela Cuadro.

Ganadores Investigación aplicada:

  • Vacuna terapéutica para el cáncer de pulmón de Graciela Ciccia.
  • Kit de diagnóstico molecular para la Enfermedad de Chagas de Luciana Larocca.
  • Test farmacogenético para determinar la hipersensibilidad al antirretroviral abacaviren pacientes infectados con HIV de Andrea Mangano.
  • Una nueva solución para la cirugía del cerebro, regeneración de las meninges a partir de la piel de Ezequiel Goldschmidt.
  • Trampa para el control de gorgojos en molinos harineros basada en un hongo entomopatógeno que sobreexpresa un factor de virulencia específico de Nicolás Pedrini.
  • Sistema autónomo de distribución cuántica de claves criptográficas de Ignacio Hernán López Grande.
  • Sistema de alarma comunitaria con identificación de alertas y usuarios de Walter Gemin.
  • Tinitoff: Técnica ydispositivo para el tratamiento de acúfenos de Alejandro Uriz.
  • Interferón recombinante para mascotas producido en larvas de insectos de Alexandra Targovnik.

Ganadores Innovación en las universidades:

  • Banco de ensayo de suspensión de cuatro postes de Gerardo López Alonso.
  • Quitosano a partir de residuos de industria del langostino  de Marcelo Cabrera Castro.
  • TIZA Aula 2.0 de Santiago Ares Pschepiurca.
  • Desarrollo sostenible de snacks y vodka a base de batatade Silvina Pérez.
  • Comunidad sustentable de Francisco LaterzaCalosso.
  • Dispositivo DAF para disfluentes de Enrique Echave.
  • Secadora y limpiadora para granos de amaranto de Rodrigo Giacometti.
  • La Tierra como acondicionador de aire natural de Leila Iannelli.
  • Biodigestor demostrativo para escuelas rurales de María Schmukler.
  • Propulsor eléctrico de rescate para guardavidas de Danilo Gallo.
  • Medidor portátil de irradiancia, PAR, temperatura y humedad de Cristian Cuesta.
  • Filtros compensadores para radioterapia de intensidad modulada de Juan Peirano.
  • Exitador para radio faro omnidireccional NDB de Gastón Mugnier.
  • NeuroTest, la solución electrónica para test neuropiscológicos de Nicolás Rosencovich.
  • Firewall para la eliminación de mensajes esteganográficos sobre los protocolos de comunicación IP y HTTP de Pablo Deymonnaz.
  • GeckoTrike de Julia Marchesi.
  • SeMBLed- Fotómetro solar portátil, automatizado con sensor basado en tecnología LED de Carla Repetto.
  • Ambiente de monitoreo terrestre oceánico de Claudio Delrieux.
  • Heladera solar- Sistema de generación y conservación eficiente del frío, mediante Renovables (sobre prototipo funcional de INTA-IPAF y UNGS) de Carolina Truchero.
  • Afieltradora en seco de LuisinaDelfino.
  • Producción de biodiesel a partir de aceite vegetal usado de NehuénAngileri.
  • Parrillas urbanas de AilénGagneten.
  • Dispositivo para la inspección de vástagos de Federico Rodríguez.
  • Móvil de carga para la cosecha de miel de Javier Di Paola.
  • Memo ZOO - Memotest para niños ciegos de María Sol FonollosaVillalba.
  • Computadora de vuelo para un vehículo autónomo no tripulado de Alan Kharsansky.
  • Irukan - Vehículo eléctrico de Nicolás Jerman.
  • Minka: mezcladora de morteros para construcciones naturales de Elena Ivanoff.
  • Sistema de rehabilitación para miembro superior en entorno de realidad virtual de Fabricio MuriCalcatelli.
  • Estación meteorológica con comunicación GSM para predicción de heladas y detección de viento zonda de Cristian Ariel Carletto.

Ganadores Distinción INNOVAR:

  • Kit de diagnóstico molecular para la Enfermedad de Chagas de Luciana Larocca.
  • Máquina cosechadora de algodón automotriz con entrega modular del algodón cosechado de Orlando Pilatti.

 Ganador Medalla de Oro de la Organización Mundial de la Propiedad Intelectual:

  •  Máquina cosechadora de algodón automotriz con entrega modular del algodón cosechado de Orlando Pilatti.

 INNOVAR, concurso que depende del Programa de Popularización de la Ciencia y la Innovación, desde el año 2005 convoca a miles de estudiantes universitarios, investigadores, y pequeñas y medianas empresas a que presenten sus propuestas.
Los ganadores tienen la posibilidad de convertir sus ideas en productos y servicios gracias a la exposición. El objetivo de la misma es estimular la transferencia de conocimiento y tecnología a través de proyectos que promuevan la innovación, la mejora en la calidad de vida de la sociedad, así como también posibilitar su comercialización e inserción en el mercado productivo a nivel nacional e internacional.
El Concurso Nacional de Innovaciones INNOVAR cuenta con el apoyo de la Universidad Tecnológica Nacional (UTN) y la participación con distinciones del Instituto Nacional de Tecnología Agropecuaria (INTA), el Instituto Nacional de Tecnología Industrial (INTI), la Comisión Nacional de Energía Atómica (CNEA) y la Organización Mundial de la Propiedad Intelectual (OMPI).

Tecnópolis 2013 es organizada por la Unidad Ejecutora Bicentenario de Secretaría General de Presidencia de la Nación y se puede disfrutar de miércoles a domingos de 12 a 20 h, con entrada libre y gratuita. La mega muestra emplazada en Villa Martelli ya recibió más de 2.000.000 de visitas desde la apertura de la presente edición.

Para más información consultar el sitio: www.innovar.gob.ar